organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,4,5-Trihydroxy-N'-(2-hydroxy-5-nitrobenzylidene)benzohydrazide monohydrate

Abeer A. Abdul Alhadi, Hapipah Mohd. Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 18 March 2009; accepted 23 March 2009

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.112; data-to-parameter ratio = 12.6.

The benzohydrazide molecule of the title compound, $C_{14}H_{11}N_3O_7H_2O_7$ is planar (r.m.s. deviation = 0.068 Å). The benzohydrazide molecule and the uncoordinated water molecule interact through $O-H\cdots O$ hydrogen bonds; these together with $O-H \cdots N$ and $N-H \cdots O$ hydrogen bonds form a three-dimensional network.

Related literature

For the parent N'-(2-hydroxybenzylidene)benzohydrazide, see: Lyubchova et al. (1995). For other N'-(2-hydroxy-5nitrobenzylidene)benzohydrazides, see: Ali et al. (2005); Lyubchova et al. (1995); Xu & Liu (2006).

Experimental

Crystal a	data
$C_{14}H_{11}N_3$	$O_7 \cdot H_2$

$C_{14}H_{11}N_3O_7 \cdot H_2O$	a = 7.0097 (2) Å
$M_r = 351.27$	b = 7.8380 (2) Å
Triclinic, $P\overline{1}$	c = 13.2953 (3) Å
friennic, <i>I</i> 1	c = 15.2955(5) T

 $\alpha = 75.597 (1)^{\circ}$ $\beta = 88.826 (2)^{\circ}$ $\nu = 81.929 \ (2)^{\circ}$ V = 700.42 (3) Å³ Z = 2

Data collection

Bruker SMART APEX diffractometer Absorption correction: none 6629 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.112$ S = 1.033209 reflections 254 parameters 7 restraints

Mo $K\alpha$ radiation $\mu = 0.14 \text{ mm}^{-1}$ T = 123 K $0.15 \times 0.10 \times 0.02 \text{ mm}$

3209 independent reflections 2373 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.019$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.42$ e Å⁻³ $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O1-H1···N2	0.84 (1)	1.81 (1)	2.581 (2)	152 (2)
$O5-H5\cdots O6^{i}$	0.84(1)	2.16 (2)	2.847 (2)	139 (2)
O6−H6···O1w ⁱⁱ	0.84(1)	1.81 (1)	2.630 (2)	162 (2)
O7−H7···O4 ⁱⁱⁱ	0.84(1)	1.87 (1)	2.715 (2)	177 (2)
O1w-H11···O5	0.84 (1)	2.13 (1)	2.918 (2)	156 (2)
O1w−H12···O1 ^{iv}	0.84(1)	2.13 (1)	2.962 (2)	169 (2)
$N3-H3\cdots O3^{v}$	0.88 (1)	2.07 (1)	2.890 (2)	155 (2)

Symmetry codes: (i) -x + 2, -y + 2, -z; (ii) x + 1, y, z; (iii) -x + 2, -y + 2, -z + 1; (iv) -x + 1, -y + 2, -z + 1; (v) -x, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

We thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2399).

References

Ali, H. M., Puvaneswary, S. & Ng, S. W. (2005). Acta Cryst. E61, 03464-03465. Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Lyubchova, A., Cossé-Barbi, A., Doucet, J. P., Robert, F., Souron, J.-P. & Quarton, M. (1995). Acta Cryst. C51, 1893-1895.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

Xu, H.-M. & Liu, S.-X. (2006). Acta Cryst. E62, o3026-o3027.

supplementary materials

Acta Cryst. (2009). E65, o908 [doi:10.1107/S1600536809010563]

3,4,5-Trihydroxy-N'-(2-hydroxy-5-nitrobenzylidene)benzohydrazide monohydrate

A. A. Abdul Alhadi, H. M. Ali and S. W. Ng

Comment

(type here to add)

Experimental

5-Nitro-2-hydroxybenzaldehyde (0.33 g, 2 mmol) and 3,4,5-trihydroxybenzoylhydrazide (0.36 g, 2 mmol) were heated in ethanol (50 ml) for several hours. The solvent was removed and the product recrystallized from DMSO.

Refinement

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, U(H) = 1.2U(C)], and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88 ± 0.01 Å and O–H 0.84 ± 0.01 Å, respectively; their temperature factors were refined isotropically.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{14}H_{11}N_3O_7H_2O$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

3,4,5-Trihydroxy-N¹-(2-hydroxy-5-nitrobenzylidene)benzohydrazide monohydrate

Crystal data	
$C_{14}H_{11}N_3O_7 \cdot H_2O$	Z = 2
$M_r = 351.27$	$F_{000} = 364$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.666 {\rm Mg m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 7.0097 (2) Å	Cell parameters from 2084 reflections
b = 7.8380 (2) Å	$\theta = 2.7 - 28.3^{\circ}$
c = 13.2953 (3) Å	$\mu = 0.14 \text{ mm}^{-1}$
$\alpha = 75.597 (1)^{\circ}$	T = 123 K
$\beta = 88.826 \ (2)^{\circ}$	Plate, yellow

$\gamma = 81.929 \ (2)^{\circ}$
V = 700.42 (3) Å ³

Data collection

2373 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.019$
$\theta_{\text{max}} = 27.5^{\circ}$
$\theta_{\min} = 1.6^{\circ}$
$h = -9 \rightarrow 9$
$k = -10 \rightarrow 10$
$l = -17 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.112$	$w = 1/[\sigma^2(F_o^2) + (0.0583P)^2 + 0.1907P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
3209 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
254 parameters	$\Delta \rho_{min} = -0.25 \text{ e } \text{\AA}^{-3}$
7 restraints	Extinction correction: none
Primary atom site location: structure-invariant direct	

 $0.15\times0.10\times0.02~mm$

methods

				•
Fractional atomic coordinate	s and isotropic or e	quivalent isotropic di	splacement parameters ($(Å^2)$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.45792 (16)	0.65420 (15)	0.74975 (9)	0.0199 (3)
O2	-0.28084 (18)	0.28619 (17)	0.85473 (9)	0.0280 (3)
O3	-0.29787 (16)	0.35460 (16)	0.68665 (9)	0.0235 (3)
O4	0.75724 (17)	0.84619 (16)	0.53567 (9)	0.0241 (3)
O5	0.70666 (16)	1.00100 (17)	0.07165 (8)	0.0216 (3)
O6	1.05293 (16)	1.11263 (16)	0.08126 (8)	0.0195 (3)
O7	1.21628 (16)	1.10003 (17)	0.27137 (9)	0.0216 (3)
O1W	0.36719 (17)	1.26409 (18)	0.06982 (9)	0.0236 (3)
N1	-0.21856 (19)	0.35371 (18)	0.76939 (10)	0.0188 (3)
N2	0.43352 (19)	0.71596 (18)	0.55014 (10)	0.0174 (3)
N3	0.50987 (19)	0.77875 (19)	0.45456 (10)	0.0182 (3)
C1	0.2933 (2)	0.5835 (2)	0.75146 (12)	0.0170 (3)
C2	0.2175 (2)	0.5116 (2)	0.84825 (12)	0.0206 (3)
H2	0.2824	0.5136	0.9099	0.025*

C3	0.0492 (2)	0.4379 (2)	0.85482 (12)	0.0196 (3)
H3A	-0.0027	0.3890	0.9206	0.024*
C4	-0.0440 (2)	0.4361 (2)	0.76366 (12)	0.0173 (3)
C5	0.0277 (2)	0.5064 (2)	0.66704 (12)	0.0172 (3)
H5A	-0.0392	0.5042	0.6060	0.021*
C6	0.1980 (2)	0.5805 (2)	0.65926 (12)	0.0166 (3)
C7	0.2744 (2)	0.6509 (2)	0.55666 (12)	0.0179 (3)
H7A	0.2075	0.6485	0.4957	0.021*
C8	0.6794 (2)	0.8441 (2)	0.45388 (12)	0.0158 (3)
С9	0.7687 (2)	0.9115 (2)	0.35203 (11)	0.0152 (3)
C10	0.6888 (2)	0.9198 (2)	0.25525 (12)	0.0157 (3)
H10	0.5683	0.8798	0.2504	0.019*
C11	0.7882 (2)	0.9876 (2)	0.16644 (11)	0.0160 (3)
C12	0.9662 (2)	1.0473 (2)	0.17210 (12)	0.0154 (3)
C13	1.0437 (2)	1.0389 (2)	0.26925 (12)	0.0159 (3)
C14	0.9458 (2)	0.9706 (2)	0.35795 (12)	0.0164 (3)
H14	0.9998	0.9637	0.4240	0.020*
H1	0.482 (3)	0.691 (3)	0.6866 (9)	0.043 (7)*
Н5	0.789 (3)	1.020 (3)	0.0256 (16)	0.060 (8)*
H6	1.151 (2)	1.158 (3)	0.0912 (18)	0.045 (7)*
H7	1.228 (3)	1.117 (3)	0.3308 (10)	0.045 (7)*
H11	0.452 (3)	1.191 (3)	0.0523 (19)	0.047 (7)*
H12	0.408 (3)	1.278 (3)	0.1260 (12)	0.055 (8)*
Н3	0.453 (3)	0.769 (2)	0.3981 (10)	0.022 (5)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
01	0.0212 (6)	0.0250 (6)	0.0149 (6)	-0.0097 (5)	-0.0003 (5)	-0.0041 (5)
O2	0.0256 (6)	0.0346 (7)	0.0205 (6)	-0.0096 (5)	0.0064 (5)	0.0017 (5)
O3	0.0212 (6)	0.0307 (7)	0.0219 (6)	-0.0077 (5)	0.0003 (5)	-0.0102 (5)
O4	0.0268 (6)	0.0361 (7)	0.0116 (5)	-0.0148 (5)	0.0000 (5)	-0.0040 (5)
O5	0.0172 (6)	0.0399 (7)	0.0094 (5)	-0.0089 (5)	0.0009 (4)	-0.0067 (5)
O6	0.0184 (6)	0.0301 (7)	0.0117 (5)	-0.0098 (5)	0.0032 (4)	-0.0053 (5)
O7	0.0186 (6)	0.0368 (7)	0.0134 (6)	-0.0132 (5)	0.0016 (5)	-0.0087 (5)
O1W	0.0215 (6)	0.0334 (7)	0.0169 (6)	-0.0077 (5)	0.0004 (5)	-0.0060 (5)
N1	0.0174 (7)	0.0206 (7)	0.0181 (7)	-0.0030 (5)	0.0028 (5)	-0.0041 (6)
N2	0.0194 (7)	0.0200 (7)	0.0123 (6)	-0.0046 (5)	0.0033 (5)	-0.0023 (5)
N3	0.0186 (7)	0.0271 (8)	0.0095 (6)	-0.0077 (6)	0.0015 (5)	-0.0034 (5)
C1	0.0184 (7)	0.0166 (8)	0.0163 (8)	-0.0028 (6)	0.0003 (6)	-0.0045 (6)
C2	0.0251 (8)	0.0233 (9)	0.0133 (8)	-0.0045 (7)	-0.0013 (6)	-0.0038 (6)
C3	0.0241 (8)	0.0213 (8)	0.0124 (7)	-0.0042 (7)	0.0032 (6)	-0.0016 (6)
C4	0.0176 (7)	0.0166 (8)	0.0173 (8)	-0.0031 (6)	0.0027 (6)	-0.0036 (6)
C5	0.0185 (7)	0.0192 (8)	0.0135 (7)	-0.0019 (6)	-0.0007 (6)	-0.0036 (6)
C6	0.0181 (8)	0.0178 (8)	0.0134 (7)	-0.0024 (6)	0.0009 (6)	-0.0032 (6)
C7	0.0202 (8)	0.0215 (8)	0.0124 (7)	-0.0043 (6)	-0.0001 (6)	-0.0044 (6)
C8	0.0177 (7)	0.0169 (8)	0.0127 (7)	-0.0029 (6)	0.0005 (6)	-0.0034 (6)
C9	0.0174 (7)	0.0170 (8)	0.0110 (7)	-0.0024 (6)	0.0022 (6)	-0.0034 (6)

supplementary materials

C10	0.0131 (7)	0 0202 (8)	0 0145 (7)	-0.0031(6)	0 0008 (6)	-0.0051 (6)
C11	0.0151(7) 0.0166(7)	0.0202(0) 0.0207(8)	0.0112(7)	-0.0014(6)	-0.0002(6)	-0.0056(6)
C12	0.0154(7)	0.0207(0) 0.0183(8)	0.0112(7)	-0.0024(6)	0.0028 (6)	-0.0034(6)
C12	0.0131(7) 0.0143(7)	0.0196 (8)	0.0121(7) 0.0147(7)	-0.0045(6)	0.00026 (6)	-0.0048(6)
C14	0.0115(7) 0.0185(7)	0.0198 (8)	0.0116(7)	-0.0039(6)	-0.0018(6)	-0.0043(6)
	0.0105 (7)	0.0190 (0)	0.0110 (7)	0.0000 (0)	0.0010(0)	0.0015 (0)
Geometric paran	neters (Å, °)					
01		1 3456 (19)	C1C	6	1.414	5(2)
01-H1		0.840(10)	C2-C	3	1.41.	7(2)
02—N1		1.2263(17)	С2—Н	2	0.95	(2)
03—N1		1.2203(17) 1 2408(17)	C3—C	2 4	1 39	(2)
04-08		1.2313(18)	С3—Н	34	0.95)0
05-C11		1 3684 (18)	C4—C	5	1 38((2)
05—H5		0.835 (10)	C5-C	6	1 39	(2)
06—C12		1 3567 (18)	С5—Н	5A	0.95)0
06—H6		0 844 (10)	C6—C	7	1 460	(2)
07 - C13		1 3654 (18)	С7—Н	7A	0.95)(_)
07—H7		0.842 (10)	C8—C	9	1 480	5(2)
01W—H11		0.837(10)	C9—C	14	1 394	4 (2)
01W—H12		0.843 (10)	C9—C	10	1.39	7 (2)
N1—C4		1 454 (2)	C10-C11		1 380	5(2)
N2—C7		1.283 (2)	C10—H10		0.950)0
N2—N3		1.3705 (18)	C11—0	C12	2 1.402 (2)	
N3—C8		1.358 (2)	C12—0	C13	1.394	4 (2)
N3—H3		0.882 (9)	C13—	C14	1.38) (2)
C1—C2		1.397 (2)	C14—]	H14	0.950	00
C1-01-H1		105.4 (16)	С5—С	6—C1	118.8	30 (14)
С11—О5—Н5		109.5 (19)	С5—С	6—C7	119.2	23 (14)
С12—О6—Н6		111.2 (16)	C1—C	6—C7	121.9	96 (14)
С13—О7—Н7		106.8 (16)	N2—C	7—С6	118.8	38 (14)
H11—O1W—H12	-H12 105 (2)		N2—C	7—H7A	120.0	6
O2—N1—O3		122.81 (13)	C6—C	7—H7A	120.0	6
O2—N1—C4		119.27 (13)	O4—C	8—N3	120.7	72 (14)
O3—N1—C4		117.92 (13)	O4—C	8—C9	121.0	07 (14)
C7—N2—N3		119.72 (13)	N3—C	8—C9	118.2	21 (13)
C8—N3—N2		116.36 (13)	C14—0	C9—C10	119.9	94 (13)
C8—N3—H3		123.5 (13)	C14—0	С9—С8	114.8	30 (13)
N2—N3—H3		120.0 (13)	C10—0	С9—С8	125.2	25 (14)
O1—C1—C2		117.78 (14)	C11—0	С10—С9	118.8	35 (14)
O1—C1—C6		122.00 (14)	C11—0	С10—Н10	120.0	5
C2—C1—C6		120.21 (14)	С9—С	10—H10	120.0	5
C3—C2—C1		120.36 (15)	O5—C	11—C10	118.7	74 (13)
С3—С2—Н2		119.8	O5—C	11—C12	119.8	36 (13)
C1—C2—H2		119.8	C10—0	C11—C12	121.3	36 (14)
C2—C3—C4		119.02 (14)	O6—C	12—C13	123.4	45 (13)
С2—С3—Н3А		120.5	O6—C	12—C11	117.4	42 (13)
C4—C3—H3A		120.5	C13—0	C12—C11	119.1	3 (13)
C5—C4—C3		121.78 (14)	O7—C13—C14		122.9	96 (14)

C5-C4-N1	118.55 (14)	O7—C13—C12	117.31 (13)
C3—C4—N1	119.64 (14)	C14—C13—C12	119.73 (14)
C4—C5—C6	119.81 (14)	C13—C14—C9	120.99 (14)
C4—C5—H5A	120.1	C13—C14—H14	119.5
С6—С5—Н5А	120.1	C9—C14—H14	119.5
C7—N2—N3—C8	-179.41 (15)	N2—N3—C8—C9	179.23 (13)
O1—C1—C2—C3	179.85 (15)	O4—C8—C9—C14	1.7 (2)
C6—C1—C2—C3	-0.3 (2)	N3—C8—C9—C14	-177.85 (14)
C1—C2—C3—C4	0.0 (3)	O4—C8—C9—C10	-177.86 (16)
C2—C3—C4—C5	-0.1 (3)	N3—C8—C9—C10	2.6 (2)
C2-C3-C4-N1	178.09 (15)	C14—C9—C10—C11	-0.1 (2)
O2—N1—C4—C5	177.95 (14)	C8—C9—C10—C11	179.45 (15)
O3—N1—C4—C5	-1.8 (2)	C9—C10—C11—O5	-177.89 (14)
O2—N1—C4—C3	-0.3 (2)	C9-C10-C11-C12	0.0 (2)
O3—N1—C4—C3	179.95 (14)	O5-C11-C12-O6	-1.7 (2)
C3—C4—C5—C6	0.4 (2)	C10-C11-C12-O6	-179.59 (14)
N1—C4—C5—C6	-177.79 (14)	O5-C11-C12-C13	177.58 (14)
C4—C5—C6—C1	-0.7 (2)	C10-C11-C12-C13	-0.3 (2)
C4—C5—C6—C7	178.65 (14)	O6-C12-C13-O7	-0.1 (2)
O1—C1—C6—C5	-179.54 (14)	C11—C12—C13—O7	-179.35 (14)
C2-C1-C6-C5	0.6 (2)	O6-C12-C13-C14	179.91 (15)
O1—C1—C6—C7	1.2 (2)	C11-C12-C13-C14	0.7 (2)
C2—C1—C6—C7	-178.71 (15)	O7—C13—C14—C9	179.26 (15)
N3—N2—C7—C6	178.44 (14)	C12-C13-C14-C9	-0.8 (2)
C5—C6—C7—N2	-178.70 (15)	C10-C9-C14-C13	0.5 (2)
C1—C6—C7—N2	0.6 (2)	C8—C9—C14—C13	-179.11 (14)
N2—N3—C8—O4	-0.3 (2)		

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A	
O1—H1…N2	0.84 (1)	1.81 (1)	2.581 (2)	152 (2)	
O5—H5…O6 ⁱ	0.84 (1)	2.16 (2)	2.847 (2)	139 (2)	
O6—H6…O1w ⁱⁱ	0.84 (1)	1.81 (1)	2.630 (2)	162 (2)	
O7—H7···O4 ⁱⁱⁱ	0.84 (1)	1.87 (1)	2.715 (2)	177 (2)	
O1w—H11···O5	0.84 (1)	2.13 (1)	2.918 (2)	156 (2)	
O1w—H12···O1 ^{iv}	0.84 (1)	2.13 (1)	2.962 (2)	169 (2)	
N3—H3···O3 ^v	0.88 (1)	2.07 (1)	2.890 (2)	155 (2)	
Symmetry adds: (i) $-x+2$ $-x+2$ $-z$; (ii) $x+1$ x z ; (iii) $-x+2$ $-x+2$ $-z+1$; (iv) $-x+1$ $-x+2$ $-z+1$; (v) $-x$ $-x+1$ $-z+1$					

Symmetry codes: (i) -x+2, -y+2, -z; (ii) x+1, y, z; (iii) -x+2, -y+2, -z+1; (iv) -x+1, -y+2, -z+1; (v) -x, -y+1, -z+1.

